by Guest » 08 Jan 2025, 08:50
Ich versuche, Renditetabellen für mehrere Länder und verschiedene Laufzeiten von einer Website zu extrahieren.
Bisher erhalte ich nur leere Tabellen:
während es eher so aussehen sollte:

Bisher habe ich Folgendes getan:
Code: Select all
import time
import datetime as dt
import pandas as pd
from bs4 import BeautifulSoup
from dateutil.relativedelta import relativedelta
import requests
import re
import os
path = os.getcwd()
def ZCCWord(Date,country):
# Site URL
url="http://www.worldgovernmentbonds.com/country/"+country
html_content = requests.get(url).text
soup = BeautifulSoup(html_content, "lxml")
#gdp = soup.find_all("table", attrs={"class": "w3-table w3-white table-padding-custom w3 small font-family-arial table-valign-middle"})
gdp = soup.find_all("table") # , attrs={"class": "w3-table money pd44 -f15"})
table1 = gdp[0]
body = table1.find_all("tr")
body_rows = body[1:]
all_rows = [] # will be a list for list for all rows
for row_num in range(len(body_rows)): # A row at a time
row = [] # this will old entries for one row
for row_item in body_rows[row_num].find_all("td"): #loop through all row entries
aa = re.sub("(\xa0)|(\n)|,","",row_item.text)
#append aa to row - note one row entry is being appended
row.append(aa)
# append one row to all_rows
all_rows.append(row)
AAA = pd.DataFrame(all_rows)
ZCC = pd.DataFrame()
ZCC = AAA[1].str.extract('([^a-zA-Z]+)([a-zA-Z]+)', expand=True).dropna().reset_index(drop=True)
ZCC.columns = ['TENOR', 'PERIOD']
ZCC['TENOR'] = ZCC['TENOR'].str.strip().str.isdigit() # Remove leading/trailing spaces
#ZCC = ZCC[ZCC['TENOR'].str.isdigit()]
ZCC['TENOR'] = ZCC['TENOR'].astype(int)
ZCC['RATES'] = AAA[2].str.extract(r'([0-9.]+)', expand=True).dropna().reset_index(drop=True).astype(float)
ZCC['RATES'] = ZCC['RATES']/100
row2 = []
for i in range(len(ZCC)):
if ZCC['PERIOD'][i]=='month' or ZCC['PERIOD'][i]=='months':
b = ZCC['TENOR'][i]
bb = Date + relativedelta(months = b)
row2.append(bb)
else:
b = ZCC['TENOR'][i]
bb = Date + relativedelta(years = b)
row2.append(bb)
ZCC['DATES'] = pd.DataFrame(row2)
ZCC = ZCC.reindex(['TENOR','PERIOD','DATES','RATES'], axis=1)
return ZCC
LitsCountries = ['spain','portugal','latvia','ireland','united-kingdom',
'germany', 'france','italy','sweden','finland','greece',
'poland','romania','hungary','netherlands']
todays_date = path+'\\WorldYields' +str(dt.datetime.now().strftime("%Y-%m-%d-%H-%M") )+ '.xlsx'
writer = pd.ExcelWriter(todays_date, engine='xlsxwriter',engine_kwargs={'options':{'strings_to_urls': False}})
dictYield = {}
for i in range(len(LitsCountries)):
country = LitsCountries[i]
Date = pd.to_datetime('today').date()
country = LitsCountries[i]
ZCC = ZCCWord(Date,country)
dictYield[i] = ZCC
ZCC.to_excel(writer, sheet_name=country)
writer.close()
time.sleep(60) # wait one minute
Ich wäre auch mit anderen Websites, Lösungen oder Methoden zufrieden, die ähnliche Ergebnisse liefern.
Irgendeine Idee?
Vielen Dank im Voraus!
Ich versuche, Renditetabellen für mehrere Länder und verschiedene Laufzeiten von einer Website zu extrahieren.
Bisher erhalte ich nur leere Tabellen:
[img]https://i.sstatic.net/md6bhS2D.png[/img]
während es eher so aussehen sollte:
[img]https://i.sstatic.net/Tp2yhYJj.png[/img]
Bisher habe ich Folgendes getan:
[code]import time
import datetime as dt
import pandas as pd
from bs4 import BeautifulSoup
from dateutil.relativedelta import relativedelta
import requests
import re
import os
path = os.getcwd()
def ZCCWord(Date,country):
# Site URL
url="http://www.worldgovernmentbonds.com/country/"+country
html_content = requests.get(url).text
soup = BeautifulSoup(html_content, "lxml")
#gdp = soup.find_all("table", attrs={"class": "w3-table w3-white table-padding-custom w3 small font-family-arial table-valign-middle"})
gdp = soup.find_all("table") # , attrs={"class": "w3-table money pd44 -f15"})
table1 = gdp[0]
body = table1.find_all("tr")
body_rows = body[1:]
all_rows = [] # will be a list for list for all rows
for row_num in range(len(body_rows)): # A row at a time
row = [] # this will old entries for one row
for row_item in body_rows[row_num].find_all("td"): #loop through all row entries
aa = re.sub("(\xa0)|(\n)|,","",row_item.text)
#append aa to row - note one row entry is being appended
row.append(aa)
# append one row to all_rows
all_rows.append(row)
AAA = pd.DataFrame(all_rows)
ZCC = pd.DataFrame()
ZCC = AAA[1].str.extract('([^a-zA-Z]+)([a-zA-Z]+)', expand=True).dropna().reset_index(drop=True)
ZCC.columns = ['TENOR', 'PERIOD']
ZCC['TENOR'] = ZCC['TENOR'].str.strip().str.isdigit() # Remove leading/trailing spaces
#ZCC = ZCC[ZCC['TENOR'].str.isdigit()]
ZCC['TENOR'] = ZCC['TENOR'].astype(int)
ZCC['RATES'] = AAA[2].str.extract(r'([0-9.]+)', expand=True).dropna().reset_index(drop=True).astype(float)
ZCC['RATES'] = ZCC['RATES']/100
row2 = []
for i in range(len(ZCC)):
if ZCC['PERIOD'][i]=='month' or ZCC['PERIOD'][i]=='months':
b = ZCC['TENOR'][i]
bb = Date + relativedelta(months = b)
row2.append(bb)
else:
b = ZCC['TENOR'][i]
bb = Date + relativedelta(years = b)
row2.append(bb)
ZCC['DATES'] = pd.DataFrame(row2)
ZCC = ZCC.reindex(['TENOR','PERIOD','DATES','RATES'], axis=1)
return ZCC
LitsCountries = ['spain','portugal','latvia','ireland','united-kingdom',
'germany', 'france','italy','sweden','finland','greece',
'poland','romania','hungary','netherlands']
todays_date = path+'\\WorldYields' +str(dt.datetime.now().strftime("%Y-%m-%d-%H-%M") )+ '.xlsx'
writer = pd.ExcelWriter(todays_date, engine='xlsxwriter',engine_kwargs={'options':{'strings_to_urls': False}})
dictYield = {}
for i in range(len(LitsCountries)):
country = LitsCountries[i]
Date = pd.to_datetime('today').date()
country = LitsCountries[i]
ZCC = ZCCWord(Date,country)
dictYield[i] = ZCC
ZCC.to_excel(writer, sheet_name=country)
writer.close()
time.sleep(60) # wait one minute
[/code]
Ich wäre auch mit anderen Websites, Lösungen oder Methoden zufrieden, die ähnliche Ergebnisse liefern.
Irgendeine Idee?
Vielen Dank im Voraus!