Satzstück erzeugt keine Modelle nach der Vorverarbeitung (gelöst)Python

Python-Programme
Anonymous
 Satzstück erzeugt keine Modelle nach der Vorverarbeitung (gelöst)

Post by Anonymous »

Dies ist also das Protokoll, das ich am Terminal sehe: < /p>

Code: Select all

sentencepiece_trainer.cc(78) LOG(INFO) Starts training with :
trainer_spec {
input: C:\Users\xxxx\OneDrive\Documents\Projects\py\xxxxx\data\tokenizer\final_text_corpus.txt
input_format:
model_prefix: C:\Users\xxxx\OneDrive\Documents\Projects\py\xxxxxxxx\tokenizer\multilingual_unigram
model_type: UNIGRAM
vocab_size: 50000
self_test_sample_size: 0
character_coverage: 1
input_sentence_size: 10000000
shuffle_input_sentence: 1
seed_sentencepiece_size: 1000000
shrinking_factor: 0.75
max_sentence_length: 16384
num_threads: 16
num_sub_iterations: 2
max_sentencepiece_length: 16
split_by_unicode_script: 1
split_by_number: 1
split_by_whitespace: 1
split_digits: 0
pretokenization_delimiter:
treat_whitespace_as_suffix: 0
allow_whitespace_only_pieces: 0
user_defined_symbols: 
required_chars:
byte_fallback: 0
vocabulary_output_piece_score: 1
train_extremely_large_corpus: 1
seed_sentencepieces_file:
hard_vocab_limit: 1
use_all_vocab: 0
unk_id: 1
bos_id: 2
eos_id: 3
pad_id: 0
unk_piece: 
bos_piece: 
eos_piece: 
pad_piece: 
unk_surface:  Γüç
enable_differential_privacy: 0
differential_privacy_noise_level: 0
differential_privacy_clipping_threshold: 0
}
normalizer_spec {
name: nmt_nfkc
add_dummy_prefix: 1
remove_extra_whitespaces: 1
escape_whitespaces: 1
normalization_rule_tsv:
}
denormalizer_spec {}
trainer_interface.cc(353) LOG(INFO) SentenceIterator is not specified. Using MultiFileSentenceIterator.
trainer_interface.cc(185) LOG(INFO) Loading corpus: C:\Users\xxxxxxx\OneDrive\Documents\Projects\py\xxxxxxx\data\tokenizer\final_text_corpus.txt
trainer_interface.cc(147) LOG(INFO) Loaded 1000000 lines
trainer_interface.cc(147) LOG(INFO) Loaded 2000000 lines
trainer_interface.cc(147) LOG(INFO) Loaded 3000000 lines
trainer_interface.cc(147) LOG(INFO) Loaded 4000000 lines
trainer_interface.cc(147) LOG(INFO) Loaded 5000000 lines
trainer_interface.cc(124) LOG(WARNING) Too many sentences are loaded! (5816781), which may slow down training.
trainer_interface.cc(126) LOG(WARNING) Consider using --input_sentence_size= and --shuffle_input_sentence=true.
trainer_interface.cc(129) LOG(WARNING) They allow to randomly sample  sentences from the entire corpus.
trainer_interface.cc(409) LOG(INFO) Loaded all 5816781 sentences
trainer_interface.cc(425) LOG(INFO) Adding meta_piece: 
trainer_interface.cc(425) LOG(INFO) Adding meta_piece: 
trainer_interface.cc(425) LOG(INFO) Adding meta_piece: 
trainer_interface.cc(425) LOG(INFO) Adding meta_piece: 
trainer_interface.cc(425) LOG(INFO) Adding meta_piece: 
trainer_interface.cc(430) LOG(INFO) Normalizing sentences...
trainer_interface.cc(539) LOG(INFO) all chars count=731130164
trainer_interface.cc(550) LOG(INFO) Done: 100% characters are covered.
trainer_interface.cc(560) LOG(INFO) Alphabet size=1280
trainer_interface.cc(561) LOG(INFO) Final character coverage=1
trainer_interface.cc(592) LOG(INFO) Done! preprocessed 5816741 sentences.
< /code>
Danach schließt das Terminal.import sys
import os
from pathlib import Path
import sentencepiece as spm

# === Paths ===
root_dir = Path(__file__).resolve().parent.parent
input_path = root_dir / "data" / "tokenizer" / "final_text_corpus.txt"
output_dir = root_dir / "tokenizer"
output_dir.mkdir(parents=True, exist_ok=True)
model_prefix = "spm_tokenizer"
log_path = output_dir / "training.log"

# === Logging setup ===
with open(log_path, "w", encoding="utf-8") as log_file:
sys.stdout = log_file
sys.stderr = log_file

print("Starting tokenizer training...")
print(f"Input corpus: {input_path}")
print(f"Output prefix: {model_prefix}")
print(f"Vocab size: {50000}")

# === Train Tokenizer ===
spm.SentencePieceTrainer.train(
input=str(input_path),
model_prefix=model_prefix,
vocab_size=50000,
model_type="unigram",
character_coverage=1.0,
pad_id=0,
unk_id=1,
bos_id=2,
eos_id=3,
user_defined_symbols=[""],
train_extremely_large_corpus=True,
input_sentence_size=10_000_000,
shuffle_input_sentence=True,
max_sentence_length=16384
)

print(f"Tokenizer trained! Model saved to: {model_prefix}.model / .vocab")

Ich habe das Training_extremely_large_corpus Flag zu True und die input_Sentce_Size und max_Sentce_Length hinzugefügt.>

Quick Reply

Change Text Case: 
   
  • Similar Topics
    Replies
    Views
    Last post