Anonymous
Konvertieren von cftime.datetimejulian in datetime
Post
by Anonymous » 16 Feb 2025, 14:50
Ich versuche, ein Xarray Datenarray in einen Pandas -Datenfreame für ein maschinelles Lernprojekt zu
konvertieren. Die pandas to_datetime () Methode. Vorschläge? Danke. < /p>
Code: Select all
nor_xr.time
array([cftime.DatetimeJulian(2015, 3, 31, 0, 0, 0, 0, 0, 90),
cftime.DatetimeJulian(2018, 12, 31, 0, 0, 0, 0, 6, 365)], dtype=object)
Coordinates:
* time (time) object 2015-03-31 00:00:00 ... 2018-12-31 00:00:00
Attributes:
standard_name: time
axis: T
nor_df = nor_xr.to_dataframe().reset_index()
nor_df.head()
time
0 2015-03-31 00:00:00
1 2015-04-01 00:00:00
pd.to_datetime(nor_df.time)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
in
2
3 #|nor_df.time.unique()
----> 4 pd.to_datetime(nor_df.time)
~\AppData\Local\Continuum\anaconda3A\lib\site-packages\pandas\core\tools\datetimes.py in to_datetime(arg, errors, dayfirst, yearfirst, utc, box, format, exact, unit, infer_datetime_format, origin, cache)
449 else:
450 from pandas import Series
--> 451 values = _convert_listlike(arg._values, True, format)
452 result = Series(values, index=arg.index, name=arg.name)
453 elif isinstance(arg, (ABCDataFrame, MutableMapping)):
~\AppData\Local\Continuum\anaconda3A\lib\site-packages\pandas\core\tools\datetimes.py in _convert_listlike(arg, box, format, name, tz)
366 dayfirst=dayfirst,
367 yearfirst=yearfirst,
--> 368 require_iso8601=require_iso8601
369 )
370
pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime()
pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime()
pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime()
TypeError: is not convertible to datetime
1739713805
Anonymous
Ich versuche, ein Xarray Datenarray in einen Pandas -Datenfreame für ein maschinelles Lernprojekt zu [url=viewtopic.php?t=12659]konvertieren.[/url] Die pandas to_datetime () Methode. Vorschläge? Danke. < /p> [code]nor_xr.time array([cftime.DatetimeJulian(2015, 3, 31, 0, 0, 0, 0, 0, 90), cftime.DatetimeJulian(2018, 12, 31, 0, 0, 0, 0, 6, 365)], dtype=object) Coordinates: * time (time) object 2015-03-31 00:00:00 ... 2018-12-31 00:00:00 Attributes: standard_name: time axis: T nor_df = nor_xr.to_dataframe().reset_index() nor_df.head() time 0 2015-03-31 00:00:00 1 2015-04-01 00:00:00 pd.to_datetime(nor_df.time) --------------------------------------------------------------------------- TypeError Traceback (most recent call last) in 2 3 #|nor_df.time.unique() ----> 4 pd.to_datetime(nor_df.time) ~\AppData\Local\Continuum\anaconda3A\lib\site-packages\pandas\core\tools\datetimes.py in to_datetime(arg, errors, dayfirst, yearfirst, utc, box, format, exact, unit, infer_datetime_format, origin, cache) 449 else: 450 from pandas import Series --> 451 values = _convert_listlike(arg._values, True, format) 452 result = Series(values, index=arg.index, name=arg.name) 453 elif isinstance(arg, (ABCDataFrame, MutableMapping)): ~\AppData\Local\Continuum\anaconda3A\lib\site-packages\pandas\core\tools\datetimes.py in _convert_listlike(arg, box, format, name, tz) 366 dayfirst=dayfirst, 367 yearfirst=yearfirst, --> 368 require_iso8601=require_iso8601 369 ) 370 pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime() pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime() pandas\_libs\tslib.pyx in pandas._libs.tslib.array_to_datetime() TypeError: is not convertible to datetime [/code]