Code: Select all
date user f1 f2 rank rank_group counts
0 09/09/2021 USER100 59.0 3599.9 1 1.0 3
1 10/09/2021 USER100 75.29 80790.0 2 1.0 3
2 11/09/2021 USER100 75.29 80790.0 3 1.0 3
1 10/09/2021 USER100 75.29 80790.0 2 2.0 3
2 11/09/2021 USER100 75.29 80790.0 3 2.0 3
3 12/09/2021 USER100 75.29 80790.0 4 2.0 3
2 11/09/2021 USER100 75.29 80790.0 3 3.0 3
3 12/09/2021 USER100 75.29 80790.0 4 3.0 3
4 13/09/2021 USER100 75.29 80790.0 5 3.0 3
3 12/09/2021 USER100 75.29 80790.0 4 4.0 3
4 13/09/2021 USER100 75.29 80790.0 5 4.0 3
5 14/09/2021 USER100 75.29 80790.0 6 4.0 3
4 13/09/2021 USER100 75.29 80790.0 5 5.0 3
5 14/09/2021 USER100 75.29 80790.0 6 5.0 3
6 15/09/2021 USER100 71.24 28809.9 7 5.0 3
5 14/09/2021 USER100 75.29 80790.0 6 6.0 3
6 15/09/2021 USER100 71.24 28809.9 7 6.0 3
7 16/09/2021 USER100 71.31 79209.9 8 6.0 3
6 15/09/2021 USER100 71.24 28809.9 7 7.0 3
7 16/09/2021 USER100 71.31 79209.9 8 7.0 3
8 17/09/2021 USER100 70.43 82809.9 9 7.0 3
7 16/09/2021 USER100 71.31 79209.9 8 8.0 3
8 17/09/2021 USER100 70.43 82809.9 9 8.0 3
9 18/09/2021 USER100 68.65 82809.9 10 8.0 3
< /code>
Angesichts der Tatsache, dass Rank_group angibt, dass der Datensatz 8 Gruppen enthält. Ich möchte mich in einen Drei -Datensatz (Zug, Validierung und Test) mit einer Rate von 70%, 20%bzw. 10%teilen. In diesem Fall würde ich erwarten, dass Train_set alle Zeilen in entsprechenden Rank_group = 1,0,2,0,0,0,0,0,0 enthält. Das Validation_Set enthält alle Zeilen in der entsprechenden RANK_GROUP = 6.0,7.0 und test_set enthält alle Zeilen in entsprechend Rank_group = 8.0.
[list]
[*]train, validation, test = np.split(user_dataset, [int(.7*len(user_dataset)), int(.2*len(user_dataset)), int(.1*len(user_dataset))])
Ansatz II: Verwenden von AD-hoc-Split
Code: Select all
`max_rank_group = user_dataset[rank_group].max()
train_number = round(max_rank_group * train_rate)
validation_number = round((max_rank_group-train_number) * validation_rate)
test_number = round((max_rank_group-validation_number) * test_rate)
print('train_number ', train_number)
print('validation_number ', validation_number)
print('test_number ', test_number)
print(' ')
train_number_frac = train_number % 1
validation_number_frac = validation_number % 1
test_number_frac = train_number % 1
current_train_rank_list = []
if train_number_frac >= 0.5:
current_train_rank_list = range(1, train_number+1)
else:
current_train_rank_list = range(1, train_number)
current_validation_rank_list = []
if validation_number_frac >= 0.5 and (train_number+validation_number+2) < max_rank_group:
current_validation_rank_list = range(train_number, train_number+validation_number+2)
else:
current_validation_rank_list = range(train_number, train_number+validation_number+1)
current_test_rank_list = []
if test_number_frac >= 0.5 and (train_number+validation_number+test_number+2)