Erhalten Sie unterschiedliche Ergebnisse von GroupBy für Datenrahmen in verschiedenen GrößePython

Python-Programme
Anonymous
 Erhalten Sie unterschiedliche Ergebnisse von GroupBy für Datenrahmen in verschiedenen Größe

Post by Anonymous »

Ich führe die gleichen Funktionen für diese beiden DFs aus, die identisch sind, außer dass sie unterschiedliche Längen (gleiche Anzahl von Spalten und Datentypen) haben. Wenn ich das größere ausführe, bekomme ich genau so, wie ich es erwarten würde, welches ein gruppierter DF zum Datum mit Index auf Interp eingestellt und dann die Interpolation der Spalte der Werte 1 eingestellt ist. Wenn ich es auf dem kleineren df ausführe, wird die Interpon Säulenheader. Gibt es irgendetwas, das eine Gruppe von GroupBy/set_index/Interpolat verursachen kann, die dazu führt, dass der DF unterschiedlich ist?

Code: Select all

    df1 = merged_df.groupby('Dates').apply(
lambda group: group.set_index('InterpOn')['Values 1'].interpolate(
method='index',limit_direction='both', limit_area='inside'))

df2 = merged_df.groupby('Dates').apply(
lambda group: group.set_index('InterpOn')['Values 2'].interpolate(
method='index',limit_direction='both', limit_area='inside'))
< /code>
großes df: < /p>
print(merged_df)
print(merged_df.index)
PyDev console: starting.
InterpOn     Date     Values 1        Values2
0     0.02367 2025-05-02             NaN        5.138635
1     0.02370 2025-05-02        5.915301             NaN
2     0.04735 2025-05-02             NaN        4.630094
3     0.07102 2025-05-02             NaN        4.304858
4     0.07109 2025-05-02        4.953734             NaN
...       ...        ...             ...             ...
8606  2.13260 2035-04-30        0.290885             NaN
8607  2.22667 2035-04-30        0.287620             NaN
8608  2.47405 2035-04-30        0.276654             NaN
8609  2.72641 2035-04-30        0.268110             NaN
8610  2.96886 2035-04-30        0.264625             NaN
[8611 rows x 4 columns]
RangeIndex(start=0, stop=8611, step=1)
< /code>
Kleine df: < /p>
print(merged_df2)
print(merged_df2.index)
InterpOn     Date     Values 1        Values2
0     0.07102 2025-05-02             NaN        4.304858
1     0.07107 2025-05-02        4.839552             NaN
2     0.09469 2025-05-02             NaN        4.058323
3     0.09893 2025-05-02        4.519238             NaN
4     0.10000 2025-05-02             NaN        4.009879
...       ...        ...             ...             ...
1139  0.72500 2025-10-17             NaN        0.408334
1140  0.73387 2025-10-17             NaN        0.404007
1141  0.74206 2025-10-17        0.405744             NaN
1142  0.74570 2025-10-17             NaN        0.398373
1143  0.75000 2025-10-17             NaN        0.396369
[1144 rows x 4 columns]
RangeIndex(start=0, stop=1144, step=1)
< /code>
Ausgabe von df1 + df2 beim Ausführen von Funktion auf großer DF: < /p>
print(df1)
print(df2)
print(df1.reset_index())
print(df2.reset_index())
PyDev console: starting.
Dates       InterOn
2025-05-02  0.02367         NaN
0.02374    5.795639
0.04735    5.327642
0.07102    4.858456
0.07122    4.854492
...
2035-04-30  2.13660    0.236831
2.23085    0.234302
2.47869    0.227912
2.73152    0.224016
2.97443    0.223111
Name: Values 1, Length: 8611, dtype: float64
Dates       InterOn
2025-05-02  0.02367    5.138635
0.02374    5.137131
0.04735    4.630094
0.07102    4.304858
0.07122    4.302775
...
2035-04-30  2.13660         NaN
2.23085         NaN
2.47869         NaN
2.73152         NaN
2.97443         NaN
Name: Values 2, Length: 8611, dtype: float64
Dates   InterpOn   Values 1
0    2025-05-02  0.02367             NaN
1    2025-05-02  0.02374        5.795639
2    2025-05-02  0.04735        5.327642
3    2025-05-02  0.07102        4.858456
4    2025-05-02  0.07122        4.854492
...         ...      ...             ...
8606 2035-04-30  2.13660        0.236831
8607 2035-04-30  2.23085        0.234302
8608 2035-04-30  2.47869        0.227912
8609 2035-04-30  2.73152        0.224016
8610 2035-04-30  2.97443        0.223111
[8611 rows x 3 columns]
Dates   InterpOn   Values 2
0    2025-05-02  0.02367        5.138635
1    2025-05-02  0.02374        5.137131
2    2025-05-02  0.04735        4.630094
3    2025-05-02  0.07102        4.304858
4    2025-05-02  0.07122        4.302775
...         ...      ...              ...
8606 2035-04-30  2.13660             NaN
8607 2035-04-30  2.23085             NaN
8608 2035-04-30  2.47869             NaN
8609 2035-04-30  2.73152             NaN
8610 2035-04-30  2.97443             NaN
[8611 rows x 3 columns]
< /code>
Ausgabe von df1 + df2 beim Ausführen von Funktion auf kleinem df: < /p>
print(df1)
print(df2)
print(df1.reset_index())
print(df2.reset_index())
InterpOn     0.07102   0.07107   0.09469  ...   0.74206  0.74570  0.75000
Dates                                   ...
2025-05-02      NaN  4.839552  4.567986  ...  1.471894      NaN      NaN
2025-05-09      NaN  2.899251  2.735597  ...  0.863719      NaN      NaN
2025-05-16      NaN  2.525711  2.380305  ...  0.706109      NaN      NaN
2025-05-23      NaN  2.128388  2.007021  ...  0.629245      NaN      NaN
2025-05-30      NaN  1.844957  1.740870  ...  0.572882      NaN      NaN
2025-06-06      NaN  1.717018  1.620191  ...  0.543621      NaN      NaN
2025-06-20      NaN  1.545027  1.458648  ...  0.506780      NaN      NaN
2025-07-18      NaN  1.367541  1.290628  ...  0.461288      NaN      NaN
2025-08-15      NaN  1.259102  1.188406  ...  0.442713      NaN      NaN
2025-09-19      NaN  1.160901  1.095712  ...  0.419598      NaN      NaN
2025-10-17      NaN  1.110341  1.046494  ...  0.405744      NaN      NaN
[11 rows x 104 columns]
InterpOn      0.07102   0.07107   0.09469  ...   0.74206   0.74570   0.75000
Dates                                    ...
2025-05-02  4.304858  4.304337  4.058323  ...  1.311007  1.297876  1.282278
2025-05-09  2.724090  2.723761  2.568512  ...  0.839582  0.831265  0.821344
2025-05-16  2.350192  2.349904  2.214085  ...  0.690618  0.683802  0.675786
2025-05-23  2.070852  2.070599  1.950801  ...  0.616408  0.610850  0.604349
2025-05-30  1.861961  1.861733  1.754223  ...  0.563564  0.558743  0.553115
2025-06-06  1.683924  1.683721  1.587589  ...  0.533107  0.528862  0.523914
2025-06-20  1.537651  1.537465  1.449704  ...  0.496104  0.492512  0.488336
2025-07-18  1.345252  1.345090  1.268564  ...  0.452838  0.450054  0.446827
2025-08-15  1.256296  1.256143  1.184143  ...  0.435486  0.433208  0.430574
2025-09-19  1.155226  1.155086  1.089053  ...  0.413487  0.411552  0.409319
2025-10-17  1.087805  1.087674  1.025609  ...  0.400107  0.398373  0.396369
[11 rows x 104 columns]
InterpOn     Dates   0.07102  0.07107  ...   0.74206  0.7457  0.75
0       2025-05-02      NaN  4.839552  ...  1.471894     NaN   NaN
1       2025-05-09      NaN  2.899251  ...  0.863719     NaN   NaN
2       2025-05-16      NaN  2.525711  ...  0.706109     NaN   NaN
3       2025-05-23      NaN  2.128388  ...  0.629245     NaN   NaN
4       2025-05-30      NaN  1.844957  ...  0.572882     NaN   NaN
5       2025-06-06      NaN  1.717018  ...  0.543621     NaN   NaN
6       2025-06-20      NaN  1.545027  ...  0.506780     NaN   NaN
7       2025-07-18      NaN  1.367541  ...  0.461288     NaN   NaN
8       2025-08-15      NaN  1.259102  ...  0.442713     NaN   NaN
9       2025-09-19      NaN  1.160901  ...  0.419598     NaN   NaN
10      2025-10-17      NaN  1.110341  ...  0.405744     NaN   NaN
[11 rows x 105 columns]
InterpOn     Dates   0.07102   0.07107  ...   0.74206    0.7457      0.75
0       2025-05-02  4.304858  4.304337  ...  1.311007  1.297876  1.282278
1       2025-05-09  2.724090  2.723761  ...  0.839582  0.831265  0.821344
2       2025-05-16  2.350192  2.349904  ...  0.690618  0.683802  0.675786
3       2025-05-23  2.070852  2.070599  ...  0.616408  0.610850  0.604349
4       2025-05-30  1.861961  1.861733  ...  0.563564  0.558743  0.553115
5       2025-06-06  1.683924  1.683721  ...  0.533107  0.528862  0.523914
6       2025-06-20  1.537651  1.537465  ...  0.496104  0.492512  0.488336
7       2025-07-18  1.345252  1.345090  ...  0.452838  0.450054  0.446827
8       2025-08-15  1.256296  1.256143  ...  0.435486  0.433208  0.430574
9       2025-09-19  1.155226  1.155086  ...  0.413487  0.411552  0.409319
10      2025-10-17  1.087805  1.087674  ...  0.400107  0.398373  0.396369
[11 rows x 105 columns]

Quick Reply

Change Text Case: 
   
  • Similar Topics
    Replies
    Views
    Last post