Code: Select all
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
ds_train = ds_train.map(normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.AUTOTUNE)
ds_test = ds_test.map(normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(128)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.AUTOTUNE)
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28, 1)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(
optimizer=tf.keras.optimizers.legacy.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
model.fit(
ds_train,
epochs=6,
validation_data=ds_test,
)
sample = cv.cvtColor(sample, cv.COLOR_BGR2GRAY)
sample = cv.resize(sample, (28, 28))
view_image(sample)
sample = np.invert(np.array([sample]))
prediction = model.predict(sample)
print(np.argmax(prediction))
sample = np.invert(np.array([sample])).reshape((28, 28, 1))
cv.imshow("test", sample)
cv.waitKey(0)
Das Modell sagt mein Bild als 3 ständig vor. Ich kenne den Grund dafür nicht. />
size = 300
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
def resize_img(image, label):
return tf.image.resize(image, (size, size)), label
ds_train = ds_train.map(resize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.map(resize_img, num_parallel_calls=tf.data.AUTOTUNE)
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
ds_train = ds_train.map(normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.AUTOTUNE)
ds_test = ds_test.map(normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(128)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.AUTOTUNE)
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(size, size, 1)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(
optimizer=tf.keras.optimizers.legacy.Adam(0.001),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
model.fit(
ds_train,
epochs=6,
validation_data=ds_test,
)
sample = cv.cvtColor(sample, cv.COLOR_BGR2GRAY)
sample = cv.resize(sample, (size, size))
view_image(sample)
sample = np.invert(np.array([sample]))
prediction = model.predict(sample)
print(np.argmax(prediction))
for class_index, prob in enumerate(prediction[0]):
print(f'Class {class_index}: Probability {prob}')
sample = np.invert(np.array([sample])).reshape((size, size, 1))
cv.imshow("test", sample)
cv.waitKey(0)
< /code>
Dies ist der Code, den ich geschrieben habe, um alle Bilder im 300x300 -Format zu verarbeiten. Natürlich ist es langsamer als der 28x28, aber ich dachte, dass es die Genauigkeit erhöhen würde. Leider hat es nichts geändert.