Wie verbessert man die CV -Geschwindigkeit der Rasterforschung?Python

Python-Programme
Anonymous
 Wie verbessert man die CV -Geschwindigkeit der Rasterforschung?

Post by Anonymous »

Der folgende Code benötigt 7-8 Stunden für einen 38000 Zeilendatensatz. Der Code gibt nur die Modellparamente mit bestem Genauigkeit zurück. Präsident und Rückrufmaterie. Um Zeit zu sparen, habe ich nur Präzision in den Code eingebaut, da dies Priorität hat. Dies ist auf meinem PC mit 14 Kernen. Logische Prozessoren: 20 < /p>

Code: Select all

def createModelAndTrain(input_data_df):

target=input_data_df['target_flag']
inputs=input_data_df.drop(['a','b','c'],axis=1)
inputs.fillna(0, inplace=True)
input_data_df.sample(frac=1).reset_index(drop=True)
x_train,x_test,y_train,y_test = train_test_split(inputs,target,test_size=0.2,random_state=365,stratify=target)
scaling= MinMaxScaler(feature_range=(-1,1)).fit(x_train)
x_train_rescaled=scaling.transform(x_train)
tuned_parameters = [
{"kernel": ["linear"], "C": [1, 10,100,1000,10000]},
{"kernel": ["poly"], "C":[1, 10,100,1000,10000]},
{"kernel": ["rbf"], "gamma": [1e-3, 1e-4], "C": [1, 10,100,1000]}
]

scores = ["precision"]
#scores = ["precision", "recall"]
for score in scores:
print("# Tuning hyper-parameters for %s" % score)
#precision_scorer = make_scorer(precision_score, zero_division=0)
#custom_scoring = {"accuracy": "accuracy", "precision": precision_scorer, "recall": "recall", "f1": "f1"}
clf = GridSearchCV(svm.SVC(), tuned_parameters, cv=5, scoring="%s_macro" % score, n_jobs = -1)
#clf = GridSearchCV(svm.SVC(), tuned_parameters, scoring=custom_scoring,refit="accuracy")
clf.fit(x_train_rescaled, y_train)

print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
means = clf.cv_results_["mean_test_score"]
stds = clf.cv_results_["std_test_score"]
for mean, std, params in zip(means, stds, clf.cv_results_["params"]):
print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params))
print()

print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
y_true, y_pred = y_test, clf.predict(scaling.transform(x_test))
print(confusion_matrix(y_true,y_pred))
print(classification_report(y_true, y_pred))
return clf.best_params_
Möchten Sie dies beschleunigen und auf AWS -Kleber -Crawler ausführen.>

Quick Reply

Change Text Case: 
   
  • Similar Topics
    Replies
    Views
    Last post