Code: Select all
df.groupby("a")["b"].var(ddof=2)
Code: Select all
df.groupby("a").agg(b_var = ("b", "var"), c_sum = ("c", "sum"))
Hier habe ich es bekommen weit:
Code: Select all
def var(ddof: int = 1) -> dd.Aggregation:
import dask.dataframe as dd
return dd.Aggregation(
name="var",
chunk=lambda s: (s.count(), s.sum(), (s.pow(2)).sum()),
agg=lambda count, sum_, sum_sq: (count.sum(), sum_.sum(), sum_sq.sum()),
finalize=lambda count, sum_, sum_sq: (sum_sq - (sum_ ** 2 / count)) / (count - ddof),
)
Code: Select all
df.groupby("a").agg({"b": var(2)})
Was fehlt mir? Gibt es einen besseren Weg, dies zu erreichen?
Ersetzen s.pow(2) mit s**2 führt ebenfalls zu einem Fehler.
Vollständiges Skript:
Code: Select all
import dask.dataframe as dd
data = {
"a": [1, 1, 1, 1, 2, 2, 2],
"b": range(7),
"c": range(10, 3, -1),
}
df = dd.from_dict(data, 2)
def var(ddof: int = 1) -> dd.Aggregation:
import dask.dataframe as dd
return dd.Aggregation(
name="var",
chunk=lambda s: (s.count(), s.sum(), (s.pow(2)).sum()),
agg=lambda count, sum_, sum_sq: (count.sum(), sum_.sum(), sum_sq.sum()),
finalize=lambda count, sum_, sum_sq: (sum_sq - (sum_ ** 2 / count)) / (count - ddof),
)
df.groupby("a").agg(b_var = ("b", "var"), c_sum = ("c", "sum")) #