Cosinus -Ähnlichkeit und LDA -ThemenPython

Python-Programme
Anonymous
 Cosinus -Ähnlichkeit und LDA -Themen

Post by Anonymous »

Ich möchte die Ähnlichkeit der Kosinus zwischen LDA -Themen berechnen. In der Tat kann Gensim -Funktion .matutils.cossim es tun, aber ich weiß nicht, welcher Parameter (Vektor) ich für diese Funktion verwenden kann?

Code: Select all

import numpy as np
import lda
from sklearn.feature_extraction.text import CountVectorizer

cvectorizer = CountVectorizer(min_df=4, max_features=10000, stop_words='english')
cvz = cvectorizer.fit_transform(tweet_texts_processed)

n_topics = 8
n_iter = 500
lda_model = lda.LDA(n_topics=n_topics, n_iter=n_iter)
X_topics = lda_model.fit_transform(cvz)

n_top_words = 6
topic_summaries = []

topic_word = lda_model.topic_word_  # get the topic words
vocab = cvectorizer.get_feature_names()
for i, topic_dist in enumerate(topic_word):
topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n_top_words+1):-1]
topic_summaries.append(' '.join(topic_words))
print('Topic {}: {}'.format(i, ' '.join(topic_words)))

doc_topic = lda_model.doc_topic_
lda_keys = []
for i, tweet in enumerate(tweets):
lda_keys += [X_topics[i].argmax()]

import gensim
from gensim import corpora, models, similarities
#Cosine Similarity between LDA topics
**sim = gensim.matutils.cossim(LDA_topic[1], LDA_topic[2])**

Quick Reply

Change Text Case: 
   
  • Similar Topics
    Replies
    Views
    Last post