Alle Features müssen in [0, 9] oder [-10, 0] liegen.Python

Python-Programme
Anonymous
 Alle Features müssen in [0, 9] oder [-10, 0] liegen.

Post by Anonymous »

Ich habe den folgenden Code:

Code: Select all

df = load_data()
pd.set_option('display.max_columns', None)
df.dtypes

intBillID                      object
chBillChargeCode               object
chBillNo                       object
chOriginalBillNo               object
sdBillDate             datetime64[ns]
sdDueDate              datetime64[ns]
sdDatePaidCancelled    datetime64[ns]
sdBillCancelledDate            object
totalDaysToPay                  int64
paidInDays                      int64
paidOnTime                      int64
chBillStatus                   object
chBillType                     object
chDebtorCode                   object
chBillGroupCode                 int64
dcTotFeeBilledAmt             float64
dcFinalBillExpAmt             float64
dcTotProgBillAmt              float64
dcTotProgBillExpAmt           float64
dcReceiveBillAmt              float64
dcTotWipHours                 float64
dcTotWipTargetAmt             float64
vcReason                       object
OperatingUnit                  object
BusinessUnit                   object
LosCode                        object
dcTotNetBillAmt               float64
dtype: object
Dann habe ich das:

Code: Select all

# Separate features and labels
X, y = df[['totalDaysToPay', 'paidOnTime','dcTotFeeBilledAmt','dcFinalBillExpAmt','dcTotProgBillAmt', 'dcTotProgBillExpAmt','dcTotProgBillExpAmt','dcReceiveBillAmt','dcTotWipHours','dcTotWipTargetAmt']].values, df['paidInDays'].values
print('Features:',X[:10], '\nLabels:', y[:10], sep='\n')
dann teile ich X,Y
aus sklearn.model_selection import train_test_split

Code: Select all

# Split data 70%-30% into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0)

print ('Training Set: %d rows\nTest Set: %d rows' % (X_train.shape[0], X_test.shape[0]))
Dann möchte ich numerische und kategoriale Merkmale transformieren:

Code: Select all

# Train the model
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LinearRegression
import numpy as np
from sklearn.ensemble import GradientBoostingRegressor

# Define preprocessing for numeric columns (scale them)
numeric_features = [8,9,10,11,12,13,15,16,17,18,19,20,21,26]
numeric_transformer = Pipeline(steps=[
('scaler', StandardScaler())])

# Define preprocessing for categorical features (encode them)
categorical_features = [1,23,24,25]
categorical_transformer = Pipeline(steps=[
('onehot', OneHotEncoder(handle_unknown='ignore'))])

# Combine preprocessing steps
preprocessor = ColumnTransformer(
transformers=[
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)])

# Create preprocessing and training pipeline
pipeline = Pipeline(steps=[('preprocessor', preprocessor),
('regressor', GradientBoostingRegressor())])

# fit the pipeline to train a linear regression model on the training set
model = pipeline.fit(X_train, (y_train))
print (model)
Allerdings erhalte ich diese Fehlermeldung:

Code: Select all

ValueError: all features must be in [0, 9] or [-10, 0]

Quick Reply

Change Text Case: 
   
  • Similar Topics
    Replies
    Views
    Last post