Ich trainiere ein maschinelles Lernmodell, um die Alzheimer -Krankheit in vier Kategorien zu klassifizieren. Nachdem ich die Trainings -Epochen ausgeführt hatte, habe ich Code verwendet, um das Modell in einer .PTH -Datei zu speichern. Nach dem Herunterladen des gespeicherten Modells und der Verbindung mit meiner Schnittstelle lieferte es keine Ergebnisse. Bei weiterer Inspektion scheint das Modell leer zu sein. < /P>
import torch
import torch.nn as nn
import torch.optim as optim
from tqdm.auto import tqdm
from torchvision import models
# Set device (GPU if available)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Define the ResNet18 model
class ResNet18(nn.Module):
def __init__(self, num_classes):
super(ResNet18, self).__init__()
self.model = models.resnet18(pretrained=False) # Set to True to use pre-trained weights
self.model.fc = nn.Linear(self.model.fc.in_features, num_classes) # Modify the final layer
def forward(self, x):
return self.model(x)
# Initialize the model with the number of classes in your dataset
num_classes = len(train_data_simple.classes) # Adjust this based on your augmented dataset
model_resnet = ResNet18(num_classes=num_classes).to(device)
# Loss function and optimizer (SGD and CrossEntropy)
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.SGD(model_resnet.parameters(), lr=0.1, momentum=0.9)
# Training loop (with progress bar using tqdm)
def train(model, train_dataloader, test_dataloader, optimizer, loss_fn, epochs):
for epoch in tqdm(range(epochs)):
model.train() # Set the model to training mode
running_loss = 0.0
correct_train, total_train = 0, 0
for batch, (X, y) in enumerate(train_dataloader):
X, y = X.to(device), y.to(device)
optimizer.zero_grad() # Zero the gradients
outputs = model(X) # Forward pass
loss = loss_fn(outputs, y) # Compute loss
loss.backward() # Backpropagation
optimizer.step() # Update the weights
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total_train += y.size(0)
correct_train += (predicted == y).sum().item()
# Print training loss and accuracy
print(f"Epoch [{epoch+1}/{epochs}], Loss: {running_loss/len(train_dataloader):.4f}")
print(f"Training Accuracy: {100 * correct_train / total_train:.2f}%")
# Validation
model.eval() # Switch model to evaluation mode for validation
correct_val, total_val = 0, 0
with torch.no_grad():
for X_val, y_val in test_dataloader:
X_val, y_val = X_val.to(device), y_val.to(device)
val_outputs = model(X_val)
_, predicted = torch.max(val_outputs.data, 1)
total_val += y_val.size(0)
correct_val += (predicted == y_val).sum().item()
# Print validation accuracy
print(f"Validation Accuracy: {100 * correct_val / total_val:.2f}%")
return model
# Example training
NUM_EPOCHS = 30 # Adjust epochs as per your requirement
# Use the augmented training data loader
trained_model_resnet = train(model_resnet, train_dataloader_simple, test_dataloader_simple, optimizer, loss_fn, NUM_EPOCHS)
< /code>
Dies ist der Code, den ich in einer verschiedenen Zelle ausgeführt habe, um das Modell < /p>
zu speichern# Save the trained model
model_path = "trained_resnet18_model.pth"
torch.save(model_resnet.state_dict(), model_path)
print(f"Model saved to {model_path}")
"Ich trainiere ein maschinelles Lernmodell, um die Alzheimer -Krankheit mithilfe von [bitte angeben Ich möchte das trainierte Modell mit Code wie model.save ('my_model.h5') oder fackel.save (model.state_dict (), 'modell.PTH') speichern. < /P>
Sollte ich den Code hinzufügen, um das geschulte Modell in derselben Zelle zu speichern, in der die Trainings -Epochen definiert sind und die Trainingsschleife läuft, oder ist es besser, ihn in eine andere Zelle zu platzieren? kann es später laden? "
Ich trainiere ein maschinelles Lernmodell, um die Alzheimer -Krankheit in vier Kategorien zu klassifizieren. Nachdem ich die Trainings -Epochen ausgeführt hatte, habe ich Code verwendet, um das Modell in einer .PTH -Datei zu speichern. Nach dem Herunterladen des gespeicherten Modells und der Verbindung mit meiner Schnittstelle lieferte es keine Ergebnisse. Bei weiterer Inspektion scheint das Modell leer zu sein. < /P> [code]import torch import torch.nn as nn import torch.optim as optim from tqdm.auto import tqdm from torchvision import models
# Set device (GPU if available) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Define the ResNet18 model class ResNet18(nn.Module): def __init__(self, num_classes): super(ResNet18, self).__init__() self.model = models.resnet18(pretrained=False) # Set to True to use pre-trained weights self.model.fc = nn.Linear(self.model.fc.in_features, num_classes) # Modify the final layer
def forward(self, x): return self.model(x)
# Initialize the model with the number of classes in your dataset num_classes = len(train_data_simple.classes) # Adjust this based on your augmented dataset model_resnet = ResNet18(num_classes=num_classes).to(device)
# Loss function and optimizer (SGD and CrossEntropy) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(model_resnet.parameters(), lr=0.1, momentum=0.9)
# Training loop (with progress bar using tqdm) def train(model, train_dataloader, test_dataloader, optimizer, loss_fn, epochs): for epoch in tqdm(range(epochs)): model.train() # Set the model to training mode running_loss = 0.0 correct_train, total_train = 0, 0
for batch, (X, y) in enumerate(train_dataloader): X, y = X.to(device), y.to(device)
optimizer.zero_grad() # Zero the gradients
outputs = model(X) # Forward pass loss = loss_fn(outputs, y) # Compute loss
loss.backward() # Backpropagation optimizer.step() # Update the weights
# Example training NUM_EPOCHS = 30 # Adjust epochs as per your requirement # Use the augmented training data loader trained_model_resnet = train(model_resnet, train_dataloader_simple, test_dataloader_simple, optimizer, loss_fn, NUM_EPOCHS)
< /code> Dies ist der Code, den ich in einer verschiedenen Zelle ausgeführt habe, um das Modell < /p> zu speichern# Save the trained model model_path = "trained_resnet18_model.pth" torch.save(model_resnet.state_dict(), model_path) print(f"Model saved to {model_path}") [/code] "Ich trainiere ein maschinelles Lernmodell, um die Alzheimer -Krankheit mithilfe von [bitte angeben Ich möchte das trainierte Modell mit Code wie model.save ('my_model.h5') oder fackel.save (model.state_dict (), 'modell.PTH') speichern. < /P> Sollte ich den Code hinzufügen, um das geschulte Modell in derselben Zelle zu speichern, in der die Trainings -Epochen definiert sind und die Trainingsschleife läuft, oder ist es besser, ihn in eine andere Zelle zu platzieren? kann es später laden? "
Ich trainiere ein maschinelles Lernmodell, um die Alzheimer -Krankheit in vier Kategorien zu klassifizieren. Nachdem ich die Trainings -Epochen ausgeführt hatte, habe ich Code verwendet, um das...
Ich habe die folgende Methode, die eine org.springframework.dao.invaliddataAccessapiusageException: abgenommene Entität an persist: com.domain.Pasger auf dem vehicleRepository.Saveall Call werfen....
Ich habe eine .clang-format -Datei in mein Projekt platziert und kann die Formatierung mit Strg+K, Strg+d anwenden. Ich habe auch konfiguriert und aktiviert Code -Reinigungsprofil auf Speichern unter...
Nach dem domänengesteuerten Design versuche ich, ein Operationsbox -Muster zu implementieren, das Domänenereignisse auf einem von Aggregateroot abgeleiteten Entität in derselben Transaktion in...
folgt domänengetriebenes Design versuche ich, ein Operationsbox-Muster zu implementieren, das Domänenereignisse in einem Aggregateroot abgeleitete Entität in derselben Transaktion in CosmosDB...