Code: Select all
>>df
ctime openbid
1443654000 1.11700
1443654060 1.11700
...
df['ctime'] = pd.to_datetime(df['ctime'], unit='s')
df = df.set_index('ctime')
df.resample('1H', how='ohlc', axis=0, fill_method='bfill')
>>>
open high low close
ctime
2015-09-30 23:00:00 1.11700 1.11700 1.11687 1.11697
2015-09-30 24:00:00 1.11700 1.11712 1.11697 1.11697
...
Code: Select all
ctime openbid highbid lowbid closebid
0 1443654000 1.11700 1.11700 1.11687 1.11697
1 1443654060 1.11700 1.11712 1.11697 1.11697
2 1443654120 1.11701 1.11708 1.11699 1.11708
Code: Select all
openbid highbid \
open high low close open high
ctime
2015-09-30 23:00:00 1.11700 1.11700 1.11700 1.11700 1.11700 1.11712
2015-09-30 23:01:00 1.11701 1.11701 1.11701 1.11701 1.11708 1.11708
...
lowbid \
low close open high low close
ctime
2015-09-30 23:00:00 1.11700 1.11712 1.11687 1.11697 1.11687 1.11697
2015-09-30 23:01:00 1.11708 1.11708 1.11699 1.11699 1.11699 1.11699
...
closebid
open high low close
ctime
2015-09-30 23:00:00 1.11697 1.11697 1.11697 1.11697
2015-09-30 23:01:00 1.11708 1.11708 1.11708 1.11708
Danke.
ps, es gibt diese Antwort: OHLC-Bestandsdaten mit Python und Pandas in einen anderen Zeitrahmen umwandeln – aber das ist schon 4 Jahre her, also hoffe ich, dass es eine gab einige Fortschritte.
Mobile version